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INTRODUCTION 

Although the two-dimensional cascade analysis represents a simplified 

version of the actual three-dimensional flow field which includes end wall 

effects, the two-dimensional problem gives significant insight into the 

cascade flow field and obviously is a necessary first step in developing a 

three-dimensional analysis.  Hence, cascade analyses of various types have 

been a subject of high interest in recent years.  Among the analyses being 

pursued are inviscid analyses (e.g. Refs. 1 and 2), inviscid analyses with 

boundary layer corrections (e.g. Ref. 3) and Navier-Stokes analyses (e.g. 

Ref. 4 and 5).  Each of these approaches are viable under certain 

circumstances.  Inviscid analyses can give good predictions of the blade 

pressure distribution for conditions where the effect of viscous phenomena 

upon the blade pressure distribution remains small.  However, inviscid 

analyses require some method of assuming airfoil circulation to obtain a 

unique flow solution.  In general this specification is straight-forward for 

sharp trailing edged blades in steady flow where the Kutta-Joukowski 

condition serves to specify circulation.  However, in cases where the 

trailing edge is rounded or the flow is unsteady or trailing edge separation 

occurs, specification of a proper condition is ambiguous.  In addition since 

inviscid methods are devoid of viscous effects by definition, they obviously 

cannot give either heat transfer or viscous loss information. 

If an inviscid analysis is combined with a boundary layer analysis in 

either a strong interaction or weak interaction mode, some of these 

limitations may be relieved.  In cases where the viscous displacement effect 

has an insignificant or only small effect on the actual blade pressure 

distribution, an inviscid calculation can be used to obtain the pressure 

distribution and a boundary layer calculation then made to obtain heat 

transfer and loss effects.  However, in many cases such as when boundary 

layers thicken significantly or separate, the viscous displacement effect may 

alter the pressure distribution.  This may be a particular problem in 

transonic flow where the local pressure distribution and shock location 

become very sensitive to small change in the effective passage area.  In 

these cases a strong interaction solution is required to account for the 

mutual effects of the viscous boundary layer and the nominally inviscid core 

flow. 



A strong interaction analysis may take the form of either a forward 

marching procedure or a global iteration.  For regions where the outer 

nominally inviscid flow is supersonic (and thus described by hyperbolic 

equations) a   solution can be spatially forward marched in the nominally 

streamwise direction with the inviscid and viscous regions coupled on a 

station-by-station basis.  Obviously, the analysis is limited by the 

governing assumptions which include lack of viscous effects in the outer 

region and neglect of normal pressure gradients and streamwise diffusion in 

the inner region.  The chief numerical difficulty with this approach is the 

stiff nature of the coupled sets of equations which is manifested in the 

appearance of physically unrealistic branching solutions.  In regions where 

the outer flow is subsonic, the outer flow equations are elliptic in nature 

and in these regions forward marching in the streamwise spatial direction is 

not possible and consequently a series of viscous and inviscid calculations 

must be performed in which each corrects the other in a global manner. 

Problems with interaction solutions become particularly severe in 

transonic flows where both subsonic and supersonic nominally inviscid regions 

are present and where small viscous displacement effects may have a major 

effect on the blade pressure distribution and shock location.  A final 

difficulty with the interactive approach occurs when boundary layer 

separation appears.  Here with an imposed pressure field, the usual steady 

state boundary layer equations are unstable when solved as an initial value 

problem in space in regions of reversed flow.  However, the equations can be 

marched in space by suppressing the streamwise convection term in the 

separated region (Ref. 6).  Although this approximation allows the solution 

to be marched through separation, the approximation becomes progressively 

more inaccurate as the extent of the separation zone or the magnitude of 

either the normal or the back flow velocities become large.  Thus, calculated 

flow details which may be important (such as heat transfer at reattachment) 

may have significant error when separation is present and such an interactive 

analysis is used.  Other schemes have and are being developed which solve the 

interaction problem without encountering an instability by either changing 

the problem to initial value in time or iteration space.  Nonetheless the 

resulting solutions still retain the approximations of the boundary layer 

equations and the inviscid flow.  However, as with inviscid flow solutions, 



combined viscous and inviscid solutions remain a valuable tool for those 

classes of cascade problems where the approximations adopted are valid. 

The final procedure currently available is the solution of full 

ensemble-averaged Navier-Stokes equations.  Such an analysis has been applied 

to a variety of cascade flow fields by Shamroth, Gibeling and McDonald (Ref. 

7), Shamroth, McDonald and Briley (Refs. 5, 8-10) and by Shamroth and 

McDonald (Ref. 4).  The use of the full Navier-Stokes equations for the 

cascade problem allows use of a single set of equations for the entire flow 

field and thus removes the need for an interaction analysis to couple 

different equation descriptions for different flow regions.  The analysis 

simultaneously predicts both the blade pressure distribution and viscous and 

heat transfer effects. 

To date this Navier-Stokes analysis has been tested against a variety 

of sets of cascade experimental data.  These include the turbine cascades of 

Turner (Ref. 11) and Hylton, Mihelc, Turner, Nealy and York (Ref. 12), the 

compressor cascades of Stephens and Hobbs (Ref. 13) and Hobbs, Wagner, 

Dannenhoffer and Dring (Ref 14) and the compressor rotor cascade of Dring, 

Joslyn and Harden (Ref. 15).  Since most experimental data is limited to 

surface pressure data, the comparisons made are primarily between calculated 

and measured surface pressure distributions.  However, in Ref. 16 comparisons 

are made between predicted and measured surface heat transfer rates and Ref. 

17 gives velocity profile comparisons.  In general, the comparisons are quite 

favorable and indicate the Navier-Stokes approach to be a viable and 

practical technique for predicting cascade flow fields which does not contain 

the possible inadequacies of more approximate approaches.  Details of the 

results are given in the cited references. 

Although these results show the Navier-Stokes approach to hold con- 

siderable promise as a design tool, at the initiation of the current effort 

the code required user expertise to obtain an accurate, converged solution in 

an efficient manner.  The purpose of the present effort was to revise the 

code so as to allow a user with little prior experience to utilize the pro- 

cedure in an effective manner.  The changes made to reach this objective are 

discussed in the present report.  However, prior to a discussion of these 

changes a brief review of the analysis is given. 



II.  ANALYSIS 

The present analysis is based upon a solution of the ensemble-averaged 

Navier-Stokes equations using the linearized block implicit (LB[) method of 

Briley and McDonald (Ref. 18).  The equations are solved in a constructive 

coordinate system (Ref. 4) with density and the Cartesian velocity components 

being taken as dependent variables.  The application of the LBI method to the 

cascade flow field problem has been discussed in some detail in Refs. 4, and 

7-10.  However, for completeness it will be repeated here along with a brief 

discussion of the coordinate system and governing equations. 

Governing Equations 

The present effort solves the time-dependent compressible Navier-Stokes 

equations to predict the cascade flow field.  If the computational spatial 

coordinates are £ and r\  where 

C= e(x,y,t) T? - T7(x,y,t) T = t (l) 

then the continuity equation, the x-component of the momentum equation and 

the y-component of the momentum equation are written as 
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In Eqs. (1-3) x and y are Cartesian coordinates, t is time, a and v are 

velocity components, p is density, p is pressure, and x^; is the stress 

tensor and Re is the Reynolds number. 

The dependent variables chosen for the present formulation are the 

density, p, and the velocity components, u and w.  Although the code does 

contain an energy equation and calculations have been made with an energy 

equation, most calculations have been run with the assumption T°, the 

stagnation temperature, equals a constant.  With this assumption, the 

pressure is related to the velocity and density by 

„  (u2 + v2) 

This approximation of constant stagnation temperature has been made solely to 

conserve run time.  Calculations made with an energy equation (e.g. Ref. 16) 

have shown no problems in converging and have given surface pressure and heat 

transfer distributions in good agreement with data.  However, inclusion of 

the energy equation obviously requires additional computer run time. 

Numerical Procedure 

The numerical procedure used to solve the governing equations is a 

consistently split linearized block implicit (LBI) scheme originally 

developed by Briley and McDonald (Ref. 18).  A conceptually similar scheme 

has been developed for two-dimensional MUD problems by Lindemuth and Killeen 

(Ref. 19).  The procedure is discussed in detail in Refs. 18 and 20.  The 

method can be briefly outlined as follows:  the governing equtions are 

replaced by an implicit time difference approximation, optionally a backward 

difference or Crank-Nicolson scheme.  Terms involving nonlinearities at the 

implicit time level are linearized by Taylor expansion in time about the 

solution at the known time level, and spatial difference approximations are 

introduced.  The result is a system of multi-dimensional coupled (but linear) 

difference equations for the dependent variables at the unknown or implicit 

time level.  To solve these difference equations, the Douglas-Gunn (Ref. 21) 

procedure for generating alternating-direction implicit (ADI) schemes as 

perturbations of fundamental implicit difference schemes is introduced in its 



natural extension to systems of parli.il differential equations.  This 

technique lends to systems of cOiipted Linear difference equtions having 

narrow block-banded matrix structures which can be solved efficiently by 

standard block—eliminat ion methods. 

The method centers around the use of a formal linearization technique 

adapted for the integration of initial-value problems.  The linearization 

technique, which requires an implicit solution procedure, permits the 

solution of coupled nonlinear equations in one space dimension (to the 

requisite degree of accuracy) by a one-step noniterative scheme.  Since no 

iteration is required to compute the solution for a single time step, and 

since only moderate effort is required for solution of the implicit 

difference equations, the method is computationally efficient; this 

efficiency is retained for multi-dimensional problems by using what might be 

termed block ADI techniques.  The method is also economical in terms of 

computer storage, in its present form requiring only two time-levels of 

storage for each dependent variable.  Furthermore, the block ADI technique 

reduces multi-dimensional problems to sequences of calculations which are 

one-dimensional in the sense that easily-solved narrow block-banded matrices 

associated with one-dimensional rows of grid points are produced.  A more 

detailed discussion of the solution procedure as discussed by Briley, Buggeln 

and McDonald (Ref. 22) is given in the Appendix A. 

Artificial Dissipation 

Since the calculations of interest are often at high Reynolds numbers 

typical of normal turbomachinery applications, it is necessary to add 

"artificial dissipation" terms to suppress spatial oscillations associated 

with central spatial differences approximations.  This can be done via a 

dissipative spatial difference formulation (e.g., one-sided difference 

approximations for first derivatives) or by explicitly adding an additional 

dissipative type term.  For the Navier-Stokes equations, the present authors 

favor the latter approach since when an additional term is explicitly added, 

the physical approximation being made is usually clearer than when 

dissipative mechanisms are contained within numerical truncation errors, 

and further, explicit addition of an artificial dissipation term allows 

greater control over the amount of non-physical dissipation being added. 
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Obviously, the most desirable technique would add only enough dissipative 

mechanism to suppress oscillations without deteriorating solution accuracy. 

Various methods of adding artificial dissipation were investigated in Ref. 8, 

and these were evaluated in the context of a model one-dimensional problem 

containing a shock with a known analytic solution (one-dimensional flow with 

. heat transfer).  The methods which were considered included second-order 

dissipation, fourth-order dissipation and pressure dissipation techniques. 

* As a result of this investigation, it was concluded that a second-order 

anisotropic artificial dissipation formulation suppressed spatial 

oscillations without impacting adversely on accuracy and could be used to 

capture the nearly normal shocks which are expected in transonic cascades 

successfully.  In this formulation the terms 

dx \°*  dx I dy *  V   dy  ' 

are   added   to   the  governing   equations   where   <J>  =  u,   v  and   p   for   the   x-momentum, 

y-momentum   and   continuity   equations,   respectively.     The   exponent   n   is   zero 

for   the   continuity  equation  and   unity   for   the  momentum  equations.     The 

dissipation  coefficient   dx   is   determined   as   follows.     The  general   equation 

has   an  x-direction  convective   term of   the   form  a3<j>/9x  and   an  x-direction 

diffusion   term  of   the   form  8 (b9<j>/3x )/9x.     The   diffusive   term   is   expanded 

d{bdcf>/dx)/dx =  bd2c£/dx2 +  db/dx dcp/dx (5) 

and   then  a   local   cell   Reynolds   number   Re^x  is   defined   for   the  x-direction 

by 

ReAx  =   1° ~ db/dx Ax/b (6) 

where b is the total or effective viscosity including both laminar and 

turbulent contributions and Ax is the grid spacing.  The dissipation 

coefficient dx is non-negative and is chosen as the larger of zero and the 

local quantity b (o~xRe/\x-l).  The dissipation parameter ox is a 

specified constant and represents the inverse of the cell Reynolds number 

below which no artificial dissipation is added.  The dissipation coefficient 



d„ is evaluated in an analogous manner and is based on the local cell 

Reynolds number Re/\y 
ann 8rid spacing Ay for the y-direction and the 

specified parameter parameter o„. 

The question arises as to the values of ax   and oy which should be 

chosen.  This was assessed both through the model problem (Ref. 8), and 

through calculations for a Jose Sanz compressor cascade (Refs. 4, 8 and 9). 

These results indicated that values of a = .5 which corresponds to a cell 

Reynolds number 2 limitation would severely damp physical variations. 

However, when a  was set in the range .025 < a < 0.05, which correspond to a 

cell Reynolds number range between 40 and 20, spurious spatial oscillations 

were damped with no significant change in the calculated results as a  was 

varied in this range.  Further, as discussed in Refs. 4 and 7-10, the results 

obtained showed good agreement with data.  This has since been confirmed at 

several other studies at Scientific Research Associates such as two- and 

three-dimensional transonic nozzle flows (Ref. 23) where a maximum acceptable 

value of ö = 0.10 has been noted for most problems.  In some cases where 

spatial resolution may be marginal such as at the leading edge of a 

relatively sharp edged blade, it may be necessary to increase a  in this local 

area.  However, a  can be decreased to 0.10 or below if computational grid 

points are added in this region. 

Boundary Conditions 

The authors' experience in solving Navier-Stokes equations has indicated 

the important role boundary conditions play in obtaining accurate solutions 

and rapid numerical convergence.  Improper specification and/or 

implementation of boundary conditions can lead to adverse stability, 

convergence and accuracy properties for the solution procedure.  In regard to 

specification of boundary conditions, the Navier-Stokes cascade analysis 

follows the suggestion of Briley and McDonald (Ref. 24) which specifies 

upstream total pressure and downstream static pressure conditions.  For the 

cascade system shown in Fig. 1, AB and CD are periodic boundaries and 

periodic conditions are set here. 

Specification of upstream and downstream conditions is somewhat more 

difficult.  For an isolated cascade, boundary conditions for the differential 

equations may be known at both upstream infinity and downstream infinity. 



However, since computation economics argues for placing grid points in the 

vicinity of the cascade and minimizing the number of grid points far from the 

cascade, the upstream and downstream computational boundaries should be set 

as close to the cascade as is practical.  However, when the upstream boundary 

is placed close to the cascade, most flow function conditions on the boundary 

will not be known since these will have been changed from values at infinity 

by the presence of the cascade. 

In the present approach, the sugestion of Ref. 24 is followed which sets 

total pressure on boundary BC (see Fig. 1).  Unless boundary BC is very far 

upstream, the flow velocity along this boundary will not be equal to the 

velocity at upstream infinity since some inviscid deceleration will have 

occurred.  However, as long as the boundary is upstream of the region of any 

significant viscous or shock phenomena, the total pressure on this boundary 

will be equal to the total pressure at upstream infinity.  Hence, total 

pressure is an appropriate boundary condition realistically modeling the 

desired flow condition.  In addition to specifying upstream total pressure, 

it is necessary to specify the inlet flow angle.  In the present calcualtion, 

a value was assumed constant on the upstream boundary as a specified angle. 

The third condition set on the upstream boundary concerns the density and a 

zero density derivative at this boundary was specified as a numerical 

treatment of the boundary.  The downstream boundary was treated by setting a 

constant static pressure as a boundary condition, and by setting second 

derivatives of both velocity components equal to zero at this location.  In 

the present application, a constant static pressure was set at downstream 

infinity, and hence it is assumed that the downstream boundary is located in 

a region where pressure is uniform although a nonuniform specification is 

permitted.  The final boundary conditions to be considered are the conditions 

along the blade surface.  Here no-slip and no through-flow conditions were 

applied leading to a specification of zero velocity on the surface.  An 

inviscid transverse momentum equation was applied on the surface leading to a 

boundary condition approximation of zero transverse pressure gradient being 

applied. 

The second item which must be considered in regard to boundary 

conditions is their implementation.  Both the upstream and downstream 

boundaries have boundary conditions associated with them which are nonlinear 

functions of the dependent variables.  These are the specifications of total 

9 



pressure on the upstream boundary and static pressure on the downstream 

boundary.  These nonlinear boundary conditions are linearized in the same 

manner as the governing equations, via a Taylor expansion of the dependent 

variables in time, and then solved implicitly along with the interior point 

equations.  Although points on the periodic lines and the branch cut are 

boundaries to the computational regime, they are interior flow fields points 

and must be treated as such.  The present technique replaces derivatives at 

these points by central differences.  In addition, in regard to the periodic 

lines the procedure inverts a matrix with strict periodic boundary 

conditions; i.e., the periodic line values are obtained from the implicit 

solution, rather than from an extrapolation or averaging procedure which uses 

interior computational grid point values. 

Turbulence Models 

The existing cascade analysis contains three possible turbulence 

models.  These are (1) a mixing length model, (ii) a turbulence 

energy-algebraic length scale model and (iii) a turbulence energy-turbulence 

dissipation model.  In the mixing length model, the turbulent viscosity is 

related to the mean strain via a mixing length, I,   such that 

^T = P I 
dill 

dx 
+ du\ 

dx 

<3u j 

dx. 

1/2 
(7) 

where MT is the turbulent viscosity, p is the density, %  is the mixing 

length, u£ is the i'-" velocity component and x^ is the i*-"1 Cartesian 

direction.  Summation is implied for the repeated indices.  The question now 

arises as to specification of % .     For the region upstream of the trailing 

edge, the mixing length is specified in the usual boundary layer manner; i.e. 

I  :.y(,-eV/27) max 
(8) 

where K is the von Karnian constant and y+ is the dimensionless normal 

coordinate, yuT/v.  In boundary layer analysis £max is usually taken as 

0.096 where 6 is the boundary layer thickness taken as the location where 

u/ue = 0.99.  However, this definition of <5 assumes the existence of an 

10 



outer flow where the velocity ue is independent of distance from the wall 

at a given streamwise station; i.e., it assumes ue is only a function of 

the streamwise coordinate.  Although a boundary layer calculation will yield 

solutions in which u approaches ue asymptotically at distances far from the 

solid no-slip surface, Navier-Stokes solutions for cascade flow fields do not 

in general predict a region where u asymptotes to a constant value. 

Furthermore, measurements of the flow also show no such region to exist in 

general.  Obviously, a proper choice of 6 for the Navier-Stokes cascade 

analysis is not straight forward.  Calculations made in Refs. 4 and 7-9 have 

set the boundary layer thickness by first determining umax, the maximum 

streamwise velocity, at a given station and then setting 6 via 

S = 2.0y, ,    .. m 
(U/Umo*:k) (9) 

i.e., 6 was taken as twice the distance for which u/umax = k].  To date 

when k\   has been taken as 0.80, this value has given reasonable results for 

several cases.  In general, the boundary layer development including skin 

friction and heat transfer is sensitive to the choice of kj whereas the 

surface pressure distribution is relatively insensitive to this parameter. 

The model used in the wake is also a mixing length model in which the 

mixing Length was made proportional to the wake height, 6, and a linear of 

growth of 6 with distance was assumed based upon the classical free jet 

boundary results (Ref.25).  With the free jet boundary growth assumption 

8= (Sps+Sss) +{.2)(x-xTE) do) 'ps 

where 5   and <SSS are the pressure and suction surface trailing edge 

boundary layer thickness and xte is the trailing edge location.  The mixing 

length, £, was taken as 0.26.  When using the mixing length model the user 

has the option of setting a transition location on suction and pressure 

surfaces.  Most calculations run to date have been run with the mixing length 

model. 

In addition to the mixing length model two alternate models are 

available.  The first is based upon the usual partial differential equation 

for conservation of turbulence energy used in conjunction with an algebraic 

11 



length sea If.  The second is a   turbulence energy-turbulence dissipation (k-e) 

model which solves partial differential equations for both the turbulence 

energy and turbulence dissipation.  Converged calcualtions have been run with 

both these models.  Although, in principle, the" more sophisticated turbulence 

models such as the one- or two-equation models contained in the present code 

have the potential for being more accurate, they require specification of 

model constants and model functional forms (e.g., see Ref. 26).  As indicated 

in Ref. 26, most of the currently used models do not appear to show a 

definitive advantage over mixing length models for general boundary layers 

developing in arbitrary pressure gradients.  The use of such models is 

currently the focus of work being conducted at SRA. 

12 



CURRENT EFFORTS 

Objective 

Although the Navier-Stokes cascade analysis has shown considerable 

promise, and given favorable comparisons with data, at the initiation of the 

present effort successful and efficient utilization of the code required an 

experienced user.  Successful implementation requires the user to exercise 

two codes; the first being a coordinate generation code and the second being 

the Navier-Stokes code.  The first objective of the present effort was to 

automate these codes so as to allow a relatively inexperienced user to (i) 

generate a viable coordinate system and (ii) to obtain accurate solutions 

with the Navier-Stokes code in an efficient manner.  The second objective of 

the effort was to restructure the Navier-Stokes code so as to obtain 

converged solutions within 300 seconds of CPU time or less on a modern 

computer without resorting to code vectorization.  Vectorization should allow 

a further order of magnitude reduction.  As shall be demonstrated, both 

objectives have been met. 

Coordinate System 

The coordinate system is an important component of the Navier-Stokes 

analysis.  An inappropriate coordinate system may lead to difficulty in 

obtaining a converged solution and even exhibit physically unrealistic 

predictions due to geometric truncation error.  Therefore, generation of a 

viable system is mandatory.  Any coordinate system used in the analysis 

should satisfy conditions of (i) generality, (ii) smoothness, (iii) 

resolvability and (iv) allow easy application of boundary conditions. 

Obviously, a coordinate system must be sufficiently general to allow 

application to a wide class of problems of interest if it is to be 

practical.  The metric data associated with the coordinate system must be 

sufficiently smooth so that the variation from grid point to grid point does 

not lead to a numerical solution dominated by metric coefficient truncation 

error; it should be noted that this requirement differs from the requirement 

of the existence of a specified number of transformation derivatives.  The 

coordinate system must resolve flow regions where rapid flow field changes 
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occur.  Finally, coordinates should allow accurate implementation of boundary 

conditions; for the cascade this requires that the metric coefficients be 

continuous across the periodic lines where periodic boundary conditions are 

to be applied.  The coordinate system presently used satisfies all these 

requirements. 

In brief, the coordinate system consists of a set of two families of 

curves; the £ = constant curves such as lines G'G or in Fig. 1 and the n = 

constant curves such as ABCD or A'ED1 in Fig. 1.  Under the present effort, 

the coordinate generation process has been automated and the coordinate 

construction process is as follows.  The coordinate system is constructed by 

first forming the inner loop A'ED1 which includes the blade.  This is 

followed by constructing an outer loop AGBCD which consists of periodic line 

AB and CD and a frontal curve BC.  Both the inner and outer loops are then 

represented by parametric curves 

x = x(s),     y = y(s) (11) 

where the parameter varies from zero to unity.  The present coordinate 

generation process utilizes a multi-part transformation for the inner loop. 

First x and y are expressed as a function of s', the physical distance along 

the curve.  After normalizing s' such that its range is between zero and 

unity a local parametrization focuses upon the leading edge region and places 

s" = 0.5 at the leading edge point where highest resolution is sought.  This 

location must be specified by the user and in general will be in the vicinity 

of the front stagnation point.  This initial transformation is done 

automatically once the location where maximum resolution is required is 

specified.  Following this first paramerization, s is related to s" via a 

hyperbolic tangent parameteriztion centered about the leading edge point 

where s" = 0.5. 

In this transformation for s" < 0.5 

I    I + ks" fit   \ 
s=_L.,nJ s- (12a) 

and for s" > 0.5 

2T   I - ks 

I    l + k(l-s") 

•■'-■if ln |-k(l-s") (12b) 
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where 

ranh(T) k = 2 tanhfX^ (12c) 

and the parameter T controls the grid distribution.  Increasing T packs 

points in the vicinity of s" =0.5 

The outer loop is then parameterized so as to relate points on the outer 

loop to corresponding points on the inner loop.  For two points which are 

periodic, such as G and K in Fig. 2 to maintain periodicity it is necessary 

that SQ = 1-SK.  This will assure that coordinate points on the upper and 

lower periodic lines will be periodically aligned. 

For points downstream of the five per cent chord location, the inner 

loop and outer loop points are made to correspond as follows.  If G' and K1 

in Fig. 2 are points on the inner loop aligned with G and K, then 

SG= 0.5S6.+ 0.5(I-SK.) 

S = 1.0 -S, 

(13) 

Downstream of the five per cent chord location, a locally polar 

parameterization is used as shown in Fig. 3.  In this region an origin for 

the polar coordinates is chosen at xQ ■ 0.05c and y0 halfway between the 

upper and lower surface locations at the five per cent chord location.  The 

inner loop parameterization s is then tabulated as a function of 0.  The 

outer loop parameterization then follows that given Eq. (13) to relate points 

P and Q on the outer loop to P1 and Q1 on the inner loop.  Finally, the outer 

loop parameterization is smoothed in the region betwen region I (x/c > .05) 

and region II (x/c < .05).  If N pseudo-radial lines are to be used, the grid 

points on each loop are chosen at values 

Sj « (i-l)/(N-|)       i = 0,N-l (14) 
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and points having the sane value of S£ on the inner and outer loops defino 

the end points for a given pseudo-radial line (e.g. G'G  of Fig. 2).  Since 

the loops are parameterized so that s varies rapidly in the region of the 

leading edge, this process effectively packs points into the leading edge 

region about the location where s = 0.5. 

Following the construction and parameterization of the inner and outer 

loop, two intermediate loops are constructed as shown in Fig. 4.  The first 

intermediate loop is constructed downstream of x/c = 0.05 a given vertical 

distance, hi, from the inner loop.  Upstream of x/c = 0.05, the distance is 

measured along a pseudo-radial line as shown in Fig. 4.  A similar loop is 

constructed inside the outer loop with the vertical distance being maintained 

to the end of the periodic region, points R and S.  The inner secondary loop 

is parameterized to correspond to the primary loop points it is connected 

with via the vertical or pseudo-radial lines; i.e., 

Similarly, 

ss' e ss 

ST-'ST 

These four parameterized loops allow the construction of the pseudo-radial 

lines such as G'G of Fig. 2 via the multi-loop method originally developed by 

Riseman (Ref. 27). 

The multi-loop method requires introduction of a position vector P(r,s) 

with components (x,y) which will represent the coordinate location of grid 

points.  Based upon the four loop construction process, vectors P^(s) are 

defined with i = 1,2,3,4.  Each P-[ has coordinate (xj_,yj_) associated 

with it at specific values of s through the previously described construction 

process.  A radial parameter, r, is then introduced.  This parameter is 

defined at the downstream boundary, see Fig. 4, as the distance from the loop 

in question to the inner loop normalized by the distance from the outer loop 

to the inner loop.  Thus, ri = 0, r2 = hi/h3, r3 = (h 3 - h2)/h3, ri+ = 1. 

With the definition of these quantities the general position vector P(r,s) is 

related to the loop position vectors PjCs), P2(s), P3(s) and P^Cs) via 

P(r,s) = (l-r^d-a.iOP^s) + (a(+2)(l-r)2 rP2(s) 

+ r2[l-a2(l-r)]"r^(s) + (a2 + 2)r2 (l-r)P3(s) 

(15) 
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where 

I       3r, -1 2 (16) 

2      3(l-r2)-l 

it   should   be   noted   that   at   r   =  0,   P(0,s)   =  Pi(s)   and   at   r   =   1,   P(l,s)   = 

Pi+(s).     Further   since   at   r  =   0, 

•fjf (0,s) = [ P2(s) - P,(s)] (a,+ 2) 

and   at   r  =   1 

^T_ M   e\=   füM-PU^n   +91 (18) -|jr(l,s) - [P4(s)-P3(s)](a2+2) 

specification of the derivatives at the inner and outer boundaries is 

determined by the parametric representation of intermediate loops 2 and 3. 

Thus the four loop method allows specification of the boundary point 

locations and coordinate angles at these boundaries. 

After loops 2 and 3 are parameterized to satisfy the coordinate angle at 

the boundary points, the grid is constructed as follows.  If the grid is to 

contain M pseudo-radial lines (such as line G'C of Fig. 1) and N 

pseudo-azimuthal lines (such as line JLM), the values of the pseudo-radial 

coordinate are 

r(i) ■ i/(N-l) i- 0,1,2, ...,N-I 

and the values of the pseudo-azimuthal coordinate are 

s(j) ■ J/CM-I) J - 0,1,2, ... f M-l 

Then the position vector; i.e., the grid locations x,y for each point in the 

grid is given by Eq. (15). 
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The preceding has assumed a uniform spacing in the radial direction.  If 

radial grid point concentration is desired, it is simply necessary to assume 

a radial distribution function.  The present analysis assumed a distribution 

function 

R « I- 
tanhPO-r) 

tanhD (19) 

which concentrates points in the wall region.  Grid points are then chosen at 

r(i) = (i)/(N-l) and the analysis proceeded as outlined. 

The input required for the grid construction process is as follows: 

1. Number of pseudo-radial points 

2. Number of pseudo-azimuthal points 

3. Vertical distance from branch cut to periodic line, h.3 
(See Fig. 4) 

4. Angle of branch cut line, 02 - This is zero in Fig. 4 

5. Angle of leading edge line, O3 

6. Approximate leading edge radius of blade - This sets the 
pseudo-azimuthal spacing in the leading edge 

7. Reference flow Reynolds number based on free stream conditions and 
blade chord - This sets normal grid spacing in the vicinity of the 
wal 1 

8. Data points or functional form to define the blade shape 

Grids generated with this procedure are shown in Figs. 5 and 6.  Fig. 5 

represents a compressor cascade corresponding to the cascade of Hobbs, et al 

(Ref. 14).  This cascade was used in the ensuing calculations which de- 

monstrate the increase in efficiency of the Navier-Stokes code obtained under 

this effort.  The second cascade which is shown in Fig. 6 corresponds to the 

turbine cascade of Turner (Ref. 11).  Both coordinate systems were generated 

from the input given in items 1-8 above and had the required properties in 

terms of grid smoothness and resolution to be viable coordinate systems. 
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The automated procedure developed to date is confined to 'C grids such 

as those shown in Figs. 5 and 6.  Recently SRA lias developed an '0' grid 

generator (Ref. 16) and although this procedure currently requires 

considerable user interaction to obtain a viable grid, automation of the '0' 

grid gnerator should be straightforwad based upon the techniques developed 

under the present effort. 

Navier-Stokes Analysis 

Having  generated a viable coordinate system, the second step in the 

process is to obtain a solution of the Navier-Stokes equations for the 

specified coordinate system and desired flow conditions.  Although the deck 

has proven capable of obtaining accurate solutions for a variety of cascade 

configurations and flow conditions (e.g. Refs. 4, 5, 8, 9, 16), successful 

operation had required an experienced user.  Furthermore, although computer 

run times were promising, they obviously could be improved, therefore, two 

subtasks were undertaken in the present effort.  These were (i) decrease of 

run time and (ii) automation of input/output. 

In regard to the first item, decrease in run time, the original casade 

code was actually a general code which could be used to solve a wide variety 

of problems with little if any code revision required by the user.  Although 

this generality represents a major advantage in a general research code, it 

does exact a price in terms of run time.  Under a previous effort some of the 

options originally available in the general code which were not required for 

the cascade problem were removed to create a specific cascade version of the 

desk.  These items included features such as a polar coordinate option, 

a two-phase and reacting flow option, etc.  Under the present effort this 

work was continued to further decrease run time. 

Among the items performed were creation of specific tridiagonal block 

matrix inversion routines for systems of three equations and three unknowns, 

incorporation of small subroutines within the calling routines and extensive 

recoding of frequently called subroutines to eliminate small "DO LOOPS". 

These modifications have not changed the flexibility or generality of the 

code; i.e., they are transparent to the user and have reduced run time by a 

factor slightly greater than two.  In its current state, the code solves the 

continuity and two momenta equations for turbulent flow in approximately 
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0.00118 sees per time step per grid point on a CRAY-1 computer.  Although an 

energy equation can be solved on request by user, the necessary fast 4x4 

matrix inverters have not yet been written and, therefore, at present general 

inversion routines must be used.  However, inclusion of specific 4x4 matrix 

inverters is a straight-forward if somewhat tedious task which could easily 

be part of a future effort.  It should be noted that the code is not 

vectorized and careful vectorization would be expected to decrease run time 

by a factor of ten.  In regard to run time per case, successful calculations 

have been made using a grid of 113 x 30 points.  Such a grid requires 

approximately 4 sees per time step with a potential of 0.4 sees per time step 

if code vectorization were performed.  The question of the run time per case 

then rests on the number of time steps to convergence. 

Although the cascade Navier-Stokes analysis can be used both for 

time-dependent and steady-state flow situations, and although good results 

for time-dependent flows have been obtained with an airfoil version of this 

code (Ref. 28), the focus of the present investigation is flows whose steady 

solution is sought.  In such a case, it is not necessary to accurately follow 

the transient motion and indeed it may be advantageous not to follow the 

transient motion accurately, if this accelerates convergence to steady 

state.  The present approach is based upon this concept and utilizes the 

matrix conditioning technique of Refs. 29 and 30 to accelerate convergence to 

a steady state. 

Using the techniques described in Refs. 29 and 30 has allowed cascade 

calculations to converge very rapidly even for low Mach number subsonic flows 

which in general can be difficult to converge.  A typical convergence history 

is presented in Fig. 7 which presents residual versus time step number for 

the subsonic cascade calculation corresponding to the experiment of Hobbs, 

et al (Ref. 14).  As can be seen, the maximum residual in the flow field 

drops by three and one-half orders of magnitude in seventy time steps.  The 

reason for the sudden jump at time sixty will be discussed shortly.  The 

maximum residual is defined by the maximum imbalance of any equation at any 

point when the time-derivative terms are omitted.  At seventy time steps the 

solution has essentially stopped changing and as will be shown, the surface 

pressure calculated is in very good agreement with that measured.  At 4 sees 
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s 

CRAY CPU time per time step the present calculation can be considered 

converged in less than 100 CPU system sees. 

The reason for the sudden jump in residual at time step 60 is due to the 

method in which the calculation was run.  The calculation was initiated with 

artificial dissipation parameters, dx and dy, equal to 0.5 (see the 

ection on artificial dissipation).  At time step sixty this was redued to 

0.05 except in the immediate vicinity of the leading edge x/c < .02 where it 

was kept at 0.5 due to marginal resolution in this region. 

A comparison between the calculated and measured surface pressure for 

this case is shown in Fig. 8.  As can be seen, the calculated and measured 

values are in excellent agreement.  Calculated velocity and pressure 

coefficient contours are shown in Figs. 9-11, and a velocity vector plot is 

shown in Fig. 12. 

The second Navier-Stokes subtask considered under the present effort 

concerns code input.  Under the present effort many of the items previously 

required to run a case have been automatically set thus allowing a new user 

to run the code.  With the current cascade code once the grid has been 

generated only the following items are required to run the code: 

1 - Restart flag 

2 - Number of grid points in each direction 

3 - Upstream flow angle, upstream total pressure, 
downstream static pressure 

4 - Reference velocity, temperature density and viscosity 
to set reference Reynolds and Mach number 

5 - Artificial viscosity 

6 - Number of time steps requested 
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ESTIMATES OF TECHNICAL FEASIBILITY 

Under the present effort, an existing coordinate generator/Navier-Stokes 

solver has been automated and streamlined so as to allow a new user to obtain 

accurate cascade solutions in an efficient manner.  The coordinate generator 

requires relatively little input other than blade shape and spacing input and 

has been used to generate two very different cascade coordinate systems. 

Further effort of this type for the '0' grid generator would lead to a 

robust, easily used cascade coordinate generation code for both '0' and 'C' 

grid types. 

The second general item investigated focused upon the Navier-Stokes 

code.  The work done under the present effort has allowed steady cascade flow 

fields to be generated in less than 300 sees of CRAY CPU time without resort- 

ing to code vectorization.  At commercial computer rates this represents a 

very practical cost.  Although code vectorization would be a time-consuming 

procedure, it is straight-forward and it is estimated that a vectorized code 

could obtain solutions in 30 sees of CRAY CPU time.  This vectorized run time 

would reduce costs to the point where multiple runs on a daily basis could be 

considered if so desired thus allowing the Navier-Stokes code to be a prac- 

tical design tool.  Extension of the current rapid run time version to 

include an energy equation would be a straight-forward task.  In this regard 

it should be re-emphasized that the current code does include an energy 

equation (although not optimized) and has been successfuly used in heat 

transfer calculations (Ref. 16). 

The present effort has concentrated upon steady flow fields at very low 

subsonic through transonic Mach numbers, although the code solves the 

time-dependent equations and could be used for time-dependent problems. 

Results obtained for flow about an isolated airfoil oscillating through a 

dynamic stall loop have been very encouraging in verifying the time-accuracy 

of the procedure for free stream Mach numbers at or above 0.30 (Ref. 28).  It 

should be recalled that for steady flows converged solutions can be obtained 

easily for much lower free stream Mach numbers, however, the technique used 

is not time-accurate.  Current efforts at SRA are aimed at modifying the 

algorithm to allow time-accurate calculations for low free stream Mach 

numbers. 
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Since many time-dependent problems require small physical steps, many 

time steps may be required to model a time-dependent process.  In these 

cases, a fast vectorized code would obviously be a major advantage.  Once 

such a code was available, it would be practical to apply the code to 

problems such as unsteady flow in cascades due to blade wake passing and 

flows with back pressure or inlet perturbations on a routine basis.  The code 

could also be used in a full nonlinear approach to the rotating stall 

problem. 
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APPENDIX A - SpILL I.BI Algorithm 

Lincarization and Time_Differencing 

The system of governing equations can be written as a single grid point 

in the following form: 

3 H(4>)/3t = D(<J)) + S(4>) (A-l) 

where <}> is the column-vector of dependent variables, H and S are column-vector 

algebraic functions of 4>, and D is a column vector whose elements are the spatial 

differential operators which generate all spatial derivatives appearing in the 

governing equation associated with that element. 

The solution procedure is based on the following two-level implicit time- 

difference approximations of (A-l): 

(Hn+1 - Hn)/At = ß(Dn+1 + Sn+1) + (1-ß) (Dn + Sn)   (A-2) 

r       -i   ,,n+l ,      .,/.n+l>   , ,     n+1  n  _,        . _ 0 where, for example, H    denotes ll(<j)   ) and At = t    -t .  The parameter p 

(0.5 -0-1) permits a variable time-centering of the scheme, with a truncation 
2 

error of order [At , (ß - 1/2) At]. 

A local time linearization (Taylor expansion about <£ ) of requisite formal 

accuracy is introduced, and this serves to define a linear differential 

operator L such that 

„n+1  „n , Tn ,.n+l   ,nN,»./..2« /, ,s D   =D+L(4>   - <J> ) + 0 (At ) (A-3) 

Similarly, 

Hn+1 = Hn + (?}\/-6i,)n   (4,n+1   - «j,n) + 0 (At2) (A-4) 

Sn+1 = Sn + (3S/H)n (<^n+1 - 4n) + 0 (At2) (A-5) 

Equations (A-3,4,5,) are inserted into Eq. (A-2) to obtain the following system 

which is linear in <)> 

(A - BAt Ln) (4>n+1 - <j,n) = At (Dn + Sn) (A-6) 

and which is termed a linearized block implicit (LB1) scheme.  Here, A denotes 

a square matrix defined by 

A = OH/3cf))n - ßAt (3S/34>)n (A-7) 
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Special Trc.it mont of Diffusive Terms 

The time differencing of diffusive terms is modified to nccomodate 

cross-deriv.itive terms and also turbulent viscosity and artificial dissipation 

coefficients (i.e., u , d.) which depend on the solution variables. 

These diffusive coefficients are evaluated explicitly at t during each 

time step.  Notationally, this is equivalent to neglecting terms proportional to 

9u /9rj> or 3d./3<}> in L , which are formally present in the Taylor expansion (A-3), 

but retaining all terms proportional to p  or d. in both L and D . 

In addition, the viscous terms in the present formulation include a 

number of spatial cross-derivative terms which are evaluated explicitly at t . 

To preserve notational simplicity, it is understood that all cross-derivative 

terms appearing in L  are neglected but are retained in D . 

Consistent Splitting of the LBI Scheme 

To obtain an efficient algorithm, the linearized system (A-6) is split 

using ADI techniques.  To obtain the split scheme, the multidimensional 

operator L is rewritten as the sum of three "one-dimensional" sub-operators 

L. (i = 1, 2, 3) each of which contains all terms having derivatives with 

respect to the i-th spatial coordinate.  The split form of Eq. (A-6) can be 

derived either by following the procedure described by Douglas and Gunn in 

their generalization and unification of scalar ADI schemes, or using approximate 

factorization.  In either case, for the present system of equations the split 

algorithm is given by 

(A - BAtL") («J.  - <}»n) = At (Dn + Sn) 

(A - BAtl^) (♦**- 4»n) =  A (<}>* - <},n) 

(A - BAtL^) (4n+1-*n) =  A (***- ') 

(A-8a) 

(A-8b) 

(A-8c) 

** 
where <j> and rj>  are consistent intermediate solutions [18,20]. If spatial 

derivatives appearing in L. and D are replaced by three-point difference 

formulas, then each step in Eqs. (A-8a, b, c) can be solved by a block- 

tridiagonal elimination. 
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